Caption 2. Generalized models
We tried to obtain the mathematical model of the considered phenomenon by means of the classic approach. However, we had the serious difficulty because we do not know how we can pass to the limit at the balance relations without a priori properties of the state function. These properties correspond the classic solution of the mathematical physics problems. Now we change the classic model by the generalized one. This is based on the generalized solution of the mathematical physics problems that has many advantages over the classic one. We determine relations between classic and generalized solution. Then the direct physical sense of the generalized solution is discussed. We describe also the approximation method for finding the generalized solution of the problem without using its classic solution. The final step here is the justification problem of constructing of the generalized model. 
2.1. Generalized solution of the problem
One well known that the proof of the existence of the classic solution and the convergence of the standard numerical algorithm to this solution are difficult enough problems. This requires also strong enough limitations with respect to parameters of the systems. We talk, of course, about the difficulties of the classic approach of mathematical physics problems, in principle, not about the concrete example. These difficulties are largely overcome by using the concept of a generalized solution of the problem, based on the theory of distributions. In this regard, we can hope for a successful overcoming of the previously mentioned difficulties with a generalized approach.

Return to the easiest mathematical model of the stationary heat transfer phenomenon (see Caption 1). We have the boundary problem
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                                                                   u(0) = 0,  u(L) = 0.                                                   (2.2)

We know that the classic solution of this problem is a twice differentiable function on the interval [0,L] with zero values at the ends of this interval that is a point of the space 
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 Besides, it satisfies the state equation (2.1) at each point. Determine another form of the solution. At first, we consider Sobolev space 
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 of all square Lebesgue integrable functions on the interval (0,L) with its first derivatives such that its values on the boundary of this interval is equal to zero. We shell use the short denotation 
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Remark 2.1. We use the generalized derivatives here. Its definition will be given later (see Section 2.3). Note that the strict general definition of the generalized derivatives is determined by means of the distributions theory (see Caption 5).

Definition 2.1. The generalized solution of the problem (2.1), (2.2) is an element of the space 
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 (see Figure 2.1) such that the following integral equality holds
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Determine the relations between the classic and the generalized solutions.            

Theorem 2.1. Each classic solution of the problem (2.1), (2.2) is its generalized solution.
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Figure 2.1. Choice of the functional class for the generalized solution.

Proof. Let the function u be a classic solution of the boundary problem (2.1), (2.2). Therefore, it belongs to the considered Sobolev space. Multiply the equality (2.1) by an arbitrary element ( of this Sobolev space. Integrating in x, we obtain 
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After integration by parts with using the equality of the function ( to zero on the boundary of the given interval, we have the equality (2.3). (
Theorem 2.2. The twice-differentiable generalized solution of the problem (2.1), (2.2) is its classic solution.

We prove this result with using of the following fundamental lemma of the calculus of variations.

Lemma 2.1. If the continuous function f on an interval 
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for all smooth enough function h with zero values on the boundary of the given interval, then f is identically zero.
Remark 2.2. We could use here the definition of zero element of the adjoint space instead of the following fundamental lemma of the calculus of variations. 
Proof of Theorem 2.2. Let the function u be a twice differentiable generalized solution of the boundary problem (2.1), (2.2). Integrate the equality (2.3) by parts. We obtain the equality (2.4). It can be transform to the equality
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Therefore, the equality (2.1) is true at the arbitrary point x because of Lemma 2.1 and the arbitrariness of the function (. We have also the boundary conditions (2.2) by the definition of the Sobolev space. (
Of course, the function of the Sobolev space can be not twice differentiable. Therefore, the generalized solution of the problem is not obligatory its classic solution. However, the twice-differentiable generalized solution is the classic solution of the problem. It is clear that a non-smooth generalized solution is not the classic solution. The relation between the classic and the generalized solutions is imaged on the Figure 2.2.
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Figure 2.2. Relation between classic and generalized solutions.

The generalized solution has weaker functional properties than classic one. Therefore, the proof of the solvability of the problem and convergence of the numerical method for the generalized method are easier than the classic one. Besides, it uses weaker suppositions with respect to the parameters of the system. These results and the equality between the smooth generalized solution and the classic one are explain the popularity of the generalized method to the mathematical physics. 
Now we can hope the possibility of the justification of the mathematical models determination by the generalized method. However, the generalized solution is determined for the boundary problem (2.1), (2.2). Therefore, the generalized solution seems as the corollary of the classic one. The generalized approach could solve the problem of the justification of the mathematical model, if the integral equality (2.3) can be obtained directly from the physical law without using the boundary problem (2.1), (2.2). It is necessary to prove the direct physical sense of the equality (2.3). Try to obtain this result.
2.2. Determination of the generalized model
We would like to proof that the equality (2.3) has the direct physical sense because this is a direct corollary of the balance relations (1.1), (1.2). Consider the equalities
                                                  
[image: image13.wmf]()() (),

xh

x

qx  qxhfd

xx

+

-+=

ò

                                         (2.5)

                                           
[image: image14.wmf]()()

()(),

uxuxh

qxkx

h

--

=-

                                          (2.6)

that are the basis of the classic model (see Caption 1).

Multiply the equality (2.5) by an arbitrary smooth enough function  with zero values on the boundary, and integrate the result. Dividing by the interval length h, we get  
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Our next transformations use the mean value theorem for integrals that is the well-known result of mathematical analysis.

Theorem 2.3. Let the function f be continuous on the interval 
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 Then there exists a point c from this interval such that (see Figure 2.3)
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Figure 2.3. Equality of the areas of the curvilinear trapezoid and the rectangle 
as the mean value theorem for integrals.
Pass to the limit formally here with using of Theorem 2.3 and the equality to zero of the function at the ends of the given interval. We obtain the integral equality (2.3). 

Thus, the equality (2.3) can be obtained as the corollary of the balance relations (2.5), (2.6). Therefore, it has the direct physical sense. Hence, we can interpret this equality as the special form of the mathematical model of the considered physical phenomenon. Now we correct our definitions.
Definition 2.2. The boundary problem (2.1), (2.2) is called the classic model of the considered process; and the integral equality (2.3) is called its generalized model XE "модель:обобщенная" . 
We could doubt of the interpretation of the equality (2.3) as a model because of the arbitrariness of the function . What is the mathematical model that depends from the arbitrary function? In reality, this is not the very serious problem. The classic model describes the state of the considered system directly. However, it is possible another case with predicting the response of the system to the exterior influence. We can interpret the function as an exterior signal (see Figure 2.4). Moreover, the interior structure of the system can be often unknown. We can observe the properties of the system only by its response to the exterior signal. It is conformed to the well-known “black box” notion. 
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Figure 2.4. Classic and generalized models.

Remember the problems of the microcosm described by the quantum mechanics laws. Any experimental fact here can be obtained exclusively through active intervention in the process. Of course, each experiment is, in principle, a result of the interaction between the considered system and the instrumentation. However, unlike the macrocosm in the quantum mechanical system, it is impossible to make measurements without introducing serious perturbations into the process under investigation. We cannot find out, in principle, where, for example, an electron is located in itself. The desired information can be obtained only by acting on it with something, for example, a photon. However, because of this experiment, the electron acquires somewhat different properties, in comparison with those that it originally had. The original properties of the object fully remain unclear that is connected with the Heisenberg uncertainty relation. The classical form of the model is based on the direct description of the structure of the object, and the generalized one describes the response of the system to any external influence. Thus, the nature of the microcosm itself is such that the generalized approach is perfectly associated with the physics of the process.
We determined the function u of the Sobolev space that satisfies the equality (2.3) as the generalized solution of the boundary problem (2.1), (2.2). However, if it is non-smooth, then the equation (2.1) does not have any natural sense. Therefore, this boundary problem can be interpreted as the short form of the denotation of the problem (2.3) only. It is not the corollary of the physical law in this case, because we cannot any possibilities to pass to the limit at the balance relations. However, if the solution of the problem (2.3) is smooth enough, then we can deduce the boundary problem (2.1), (2.2) from the equality (2.3). Therefore, the classic model is, in reality, secondary with respect to the generalized one. Thus, it will be better change our terminology, because it is not correct to use the denotation “generalized solution of the boundary problem”, if the relation (2.3) can be true for the case of non-applicability of this boundary problem.

We use the following definition (see Figure 2.5). 
Definition 2.3. The function of Sobolev space is called the generalized state of the considered system, if it satisfies the equality (2.3). The twice-differential function is called the classical state of this system, if it satisfies the boundary problem (2.1), (2.2). 
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Figure 2.5. Relations between classic and generalized methods.
Hence, the generalized solution of the problem or rather generalized state of the system has a direct physical sense. It is not only inferior to the classical solution, but even surpasses it from the physical point of view. This is very good. However, we do not know if it is constructive as yet. We would like to have the method of solving the problem (2.3) without its transformation to the boundary problem (2.1), (2.2). If we find it, we can decide that the generalized model is, in reality, independent from the classic one. 
The formula (2.3) contains the operation of the differentiation and the integration. The integration of the integrable function is the natural operation. However, it is not clear an approximation of the derivatives of the nonsmooth integrable functions. Hence we shell precise the sense of the derivatives at the formula (2.3).
2.3. Generalized derivatives  

We know that the standard method of solving of the boundary problem (2.1), (2.2) is based on the approximation of the derivatives (see Caption 1). The definition of the formulas of approximated differentiation applied the smoothness of the considered functions. However, the equality (2.3) involves the generalized derivatives but not classic ones because the element of the Sobolev space can be non-differentiable function. Therefore, we would like to approximate the generalized derivatives for practical finding the generalized state of the system. At first, remind the definition of the generalized derivative.
Definition 2.4. The object 
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 is called the generalized derivative of the function u on the interval (a,b), if it satisfies the equality
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for all smooth enough function ( with zero values at the points a and b.

Remark 2.3. We shell determine the class of objects, where the generalized derivative has the sense, at Caption 5. The definition of the generalized derivative will be clarify there. We shell exact also the functional class of the function (.
Consider an example. 
Example 2.1. Determine the function
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on an interval (a,b), where a<0<b. Using equality (2.7), we get 
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Thus, the generalized derivative of the differentiable function u is the continuous function
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Note, that the generalized derivative is equal to the classic one for this case.

Find the generalized derivative of the non-smooth function v. We have
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where the function w is equal to –1 for the negative values of argument, and to 1 for its positive values. Therefore, the generalized derivative of the non-differential function v is the discontinuous function w. 
Note that the generalized derivative characterizes the velocity of the function change as the classic one (see Figure 2.6). For all negative values of the argument, the function v decreases with the constant velocity. Its generalized derivative w is equal to the negative constant. For all positive values of the argument, the function v increases with the constant velocity. Its generalized derivative w is equal to the positive constant. Besides, the point of the non-smoothness of the function v is the point of the discontinuity of the function w. 
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Figure 2.6. The generalized derivative characterizes the velocity of the function change.

In reality, the formula (2.7) is applicable for the discontinuous functions too. Then we can try to find the generalized derivative of the function w. We get
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Hence, the generalized derivative of the function w is such object that the integral of its product by the arbitrary smooth function is its doubled value at zero. After division by 2 this object is called the (-function. This is determined by the equality
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for all continuous function (.
Thus, the generalized derivative of the function w is the object 
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 This is not function even. Indeed, the generalized derivative described the velocity of the change of the function. Our function w is equal to –1 for all negative arguments and +1 for all positive arguments. Therefore, its velocity of the change y is equal to the zero for all non-zero argument. However, for any small value ( the function w has a finite increase 2 on the small interval [–(,(]. Hence, the velocity of its change y is infinite. Of course, we do not have the function with these properties. This is an element of the class of the generalized function or distributions (see Caption 5). 
Thus, the generalized derivative of the discontinuous function exists. This is not function. However, we can approximate it by smooth functions (see Figure 2.7). Note that the standard sense of the classical derivative is saved in this case too. Indeed, the function w has the jump at zero. Therefore, its velocity of the change is unbounded on the neighbourhood of this point. 
Remark 2.4. We shell talk about the approximation of the (-function at Caption 5. 

The properties of the function u and its generalized derivatives are given in the Table 2.1.

Table 2.1. Properties of the function and its generalized derivatives. 

	object
	definition
	smoothness
	monotony

	u
	x | x | /2
	differentiability
	increase

	u'
	| x |
	non-differentiability
at zero
	decrease, if  x<0,
increase, if  x>0

	u''
	-1, x<0; 
 1,  if x>0
	jump at zero
	piecewise constant

	u'''
	2((0)
	distribution
	zero for all points except zero  
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Figure. 2.7. (-function is a limit of a sequence of the regular functions. 

In principle, we can use Definition 2.4 for the determination of the generalized derivative from the object y even. We have
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by definition of (-function. 

Note, that we do not know direct definition of y and its generalized derivative z. However, we can interpreted y as the transformation of the arbitrary smooth enough function ( to the number 
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 This is can be denoted by the equality
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This is typically for the generalized method, in principle. We cannot do determine the state of the system, but we can find the response of the system to each exterior signal. 

Analogically, we can interpreted the object z as the transformation of the arbitrary smooth enough function ( to the number 
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The transformation that maps the function to the number is called the functional. Therefore, y and z are the functionals.

Determine the properties of these functionals. For all smooth enough functions ( and (, for all numbers a and b the map y transform the function 
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 We have the equality
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Thus, the functional y is linear. Now suppose the convergence 
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 i.e. the functional y is continuous. Thus, the object y is the linear continuous functional on the class of the continuous functions on the given interval. 

Remark 2.5. The set of all linear continuous functionals on a space is called the adjoint space (see Caption 3). We shell determine that each distribution is a linear continuous functional on a class of smooth enough functions (see Caption 5).

We can determine analogically, that the object z is the linear continuous functional on the class of the continuously differentiable functions. 
Remark 2.6. We shell determine that each distribution is a linear continuous functional on a class of smooth enough functions (see Caption 5).
Thus, we know, what is this the generalized derivative. Now we can consider the approximation method for the analysis of the generalized model.

2.4. Approximation of the generalized model
We approximated the equation (2.1) with using the standard formulas of the approximate differentiation (see Caption 1). However, it used the smoothness of the functions. We would like to obtain the practical algorithm of finding the generalized state of the system. Therefore, one necessary to approximate the generalized derivatives.

Consider the equality (2.7) 
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where ( is a smooth enough arbitrary function. Divide the interval (a,b) by М equal parts with the step h = (b – a)/М. Approximate the integrals of the previous equality by the right rectangle formula (see Figure 2.8)
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Figure 2.8. Right rectangle formula.
The derivative of the function ( can be approximated, for example, by the back-difference formula (see Caption 1). This is substantiate because the values under the integrals are integrable, and the function ( is continuously differentiable. Using the boundary conditions, we have
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where  ui = u(xi) , (i = ((xi) , xi = а + ih . We use here the equality of the considered functions to zero on the boundary. Therefore, we get
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The function ( is arbitrary here. Choose it equal to the zero for all points except xi with fixed number i. So we get
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This is the well-known formula of the forward difference.

If we use the left rectangle formula for the approximation of the integral and the forward difference formula for the approximation of the derivative of the function (, we will determine the back difference formula for the generalized derivative of the function u. Therefore, the classic formulas of the approximate differentiation are applicable for the generalized derivatives too. Now we can approximate the generalized model (2.3).
Approximate the integrals and derivatives of the equality  
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We obtain
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We have the equalities
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because of the boundary conditions. Then we get
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Choose (i  equal to the zero for all value of the indexes except one of it, we have 
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This is the standard difference equation. Particularly, this is equal to the standard equality (1.5). 

We have the same results for finding the solution of the classic model and the generalized one. Thus, the generalized model can be solved by the standard finite difference method. The general state can be found directly without using the classic model. Note that the substantiation of the numerical method is easier here, because it necessary to prove the convergence in Sobolev space only. However, the convergence on the algorithm for the classic case requires the convergence in the space of the twice-differentiable functions. Hence, the numerical analysis of the generalized model is easier than of the classic one.
Thus, the generalized model seems preferable than the classic one. However, we return now to the problem of the substantiation of the determination of the considered model. 
2.5. Validity of the generalized method
We have already made sure that all three stages of the research, i.e. the conclusion of the model, its qualitative and quantitative analysis, can be carried out on the basis of a generalized approach without any reference to the classic approach. Besides, the implementation of each of these stages is actually more effective for the generalized model than for the classical one (see Figure 2.9). Indeed, the justification for the passage to the limit for the definition of the mathematical model is realized under weaker restrictions on the state function and the parameters of the system. Therefore, the generalized model is applicable for larger class of the systems than the classic one. The existence of the generalized state and the convergence of the numerical methods of its finding can be proved easier and for larger class of parameters. These facts explain the extremely high popularity of the generalized approach in mathematical physics. If there exists the necessity to determine the classic solution of the system, then, as a rule, one determines its generalized solution and tries to prove its smoothness. 
By high efficiency of the generalized approach in mathematical physics, we can suppose the possibility of a correct determination of mathematical models on its basis. Return to the construction of the generalized model from the balance relations. We have already known that the integral equality is the direct corollary of the physical laws. This does not require the use of an insufficiently validated classical model. However, the determination of the generalized model uses passage to the limit too. This operation is correct under restrictions to all considered functions. We have the possibility to choose the functional properties of the given functions k and f and the arbitrary function (. However, we do not have any information about the generalized state u. Moreover, we cannot guaranty it existence even.
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Figure 2.9. Advantage of the generalized and classic models.

Of course, now we have the weaker restriction for the state function. Indeed, the generalized state should be an element of the Sobolev space only, and the classic one should be twice differentiable function. Unfortunately, all functional properties of the state function can be obtained on the second step of the analysis, i.e. after the determination of the mathematical model. Therefore, we have the same difficulty as before (see the classical case, Caption 1).
Thus, the overcoming difficulties in determining mathematical models requires the development of a qualitatively different approach to solving this problem. We would like to prove the convergence at the balance relations as the elementary volume shrinks to a point. Therefore, it will be necessary for us to consider seriously the passage to the limit that is a one of the most important and difficult mathematical operation.  
Conclusions

· A generalized approach in mathematical physics is an alternative to the classical approach.

· The generalized solution of the mathematical physics problem is an element of the Sobolev space that satisfies an integral equality.

· The classic solution of the mathematical physics problem is always its generalized solution.

· The smooth enough generalized solution of the mathematical physics problem is its classic solution.

· The integral equality that determines the generalized solution is the direct corollary of physical law; therefore, it can be interpreted as a special form of mathematical model.

· The generalized state of the system can be found directly by standard numerical methods without using the classic mathematical model.

· The generalized method of the determination of the mathematical model is not substantiated because of the difficulties with passage to the limit.

· It is necessary to find another method of analysis.

We have the serious problems with substantiation of the convergence. Therefore, our next step will be the analysis of the general methods of the passage to the limit.
Comments
Lemma 2.1. [Gelfand, I.M.; Fomin, S.V. (1963), Calculus of variations, Prentice-Hall (transl. from Russian, Lemma 1 on p. 9).

mean value theorem for integrals    Rudin, Walter (1976). Principles of Mathematical Analysis (3rd ed.) (PDF). New York: McGraw-Hill. p. 113.
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